2nd International *Blastocystis* Conference 9-12th October 2018 Bogotá, Colombia

Workshop session 7: *Blastocystis* comparative genomics and evolution Andrew J. Roger: Andrew.Roger[at]Dal.Ca

Comparative genomics is a fast-moving field that is heavily dependent on technical advances in DNA sequencing technology and bioinformatics method development. The kind and quality of genome and transcriptome sequence data and genome assemblies/annotations available for *Blastocystis* subtypes in public databases is rapidly changing and will continue to do so.

Three reasonable quality draft genomes with annotated genomes and predicted gene sets are published and publicly available. These include:

Blastocystis sp. ST7- Singapore isolate B (genome contigs, EST data and predicted genes) Blastocystis sp. ST4-WR1 isolate (genome contigs and predicted genes) Blastocystis sp. ST1- NandII isolate (genome contigs and predicted genes)

However there are also unpublished draft genome sequences (with no gene predictions) for: Blastocystis sp. ST2 (Flemming isolate) Blastocystis sp. ST3 (ZGR isolate) Blastocystis sp. ST6 (SSI:754 isolate) Blastocystis sp. ST8 (Dmp/08-128 isolate) Blastocystis sp. ST9 (F5323 isolate)

In this workshop I will cover a number of topics related to the bioinformatic analysis of *Blastocystis* gene, genome and predicted proteome data.

Teaching outcomes:

After this short workshop you should be able to:

- Understand how to use the **NCBI website** to download gene or genome sequences for *Blastocystis* subtypes and do **BLAST** searches for homologs in *Blastocystis* genomes
- View and extract information from an annotated genome contig in **Artemis** (or Integrative Genomics Viewer)
- Navigate the use of a number of tools (**eggNOG-mapper**, **Interproscan**, etc) to help with functional annotation of a set of proteins of interest by searching orthologous groups and profile HMMs
- Use tools to help you predict the subcellular localizations of proteins of interest within *Blastocystis* cells
- Use tools (MAFFT) to do multiple alignments and investigate the phylogenies of particular genes
- Find more information about particular classes of proteins such as proteases and carbohydrate active enzymes (CAZy)

More reading on bioinformatics/genomics theory and methods

- The BLAST Sequence analysis tool: <u>https://www.ncbi.nlm.nih.gov/books/NBK153387/</u>
- What is a hidden Markov Model (HMM)? <u>https://www.nature.com/articles/nbt1004-1315</u>
- Profile HMMs for protein families: <u>http://www.biology.wustl.edu/gcg/hmmanalysis.html</u>

Part 1 – Browsing genome assemblies downloaded from databases

<u>Tools/databases used:</u> NCBI (<u>http://www.ncbi.nlm.nih.gov</u>) Artemis (<u>https://www.sanger.ac.uk/science/tools/artemis</u>)

Introduction

When genomes are sequenced and published, they are usually deposited in a database such as GenBank at NCBI (or EMBL-EBI or DDBJ). The files that are deposited end up in GenBank format (.gbff files) as a Biosample within a Bioproject. They are also usually accessible from the "Genome" database. Annotated genomes (e.g. ST7, ST4, and ST1 above) have associated information about locations of genes and other features in the sequence. If the genomes are just contigs and are not annotated with predicted genes etc. (like ST2, 3, 6, 8 and 9), then these files are just nucleotide sequences only with no 'Features' mapped in the GenBank file. Here you will investigate these files in GenBank in a genome viewer/editor **Artemis.**

Steps to follow:

- 1. Go to NCBI (http://www.ncbi.nlm.nih.gov) and select "Genome" from the search menu.
- 2. Type in **Blastocystis** and hit search. You will see two entries, one for **Blastocystis hominis** and one for **Blastocystis**.
- 3. Click on each of them and look carefully at the information on the pages.
- 4. Ask yourself what genome assemblies are present and for what subtypes?
- 5. Go to the *Blastocystis* sp. ATCC 50177/NandII assembly and look in the INDSC column.

INDSC stands for International Nucleotide Sequence Database Collaboration, a long-standing collaboration between NCBI, DDBJ and EMBL-EBI databases. Accession numbers shown in this column are used by all three databases.

Blastocystis sp. ATCC 50177/Nand II											
Submitter: Dalhousie University											
Enviro	onme	nt: Opt	imumTemperature	e: C, Habitat:	HostAssociated						
Lo	oc '	Туре	Name	RefSeq	INSDC	Size (Mb)	GC%	Protein	Other RNA	Gene	Pseudogene
			master WGS	-	LXWW00000000.1	6.47	53.0	6,544	18	6,617	55
		Un	-	•		16.47	53.0	6,544	18	6,611	49

- 6. Click on the accession number there below INSDC.
- This is the GenBank entry for the whole genome shotgun (WGS) sequencing project. At the bottom of the entry you will see the list of the contigs: LXWW01000001-LXWW01000580. Click on those.
- 8. This will bring up the 'Sequence Set browser' that shows each of the 580 contigs from the assembly. Click on the 'GenBank' link for the first contig: LXWW01000001
- 9. Scroll up and down to see the format of the file. The 'FEATURES' section provides the information about the locations of the genes, putative mRNA start and stop sites, intron positions, annotation information, the inferred amino acid sequences of proteins. At the bottom you will see 'ORIGIN' with the entire nucleotide sequence of the whole contig.
- 10. Go to the top right hand side and click on 'Send to:' and choose 'Complete record' and 'File'. Select GenBank (full) and save the file to your working directory with the name LXWW01000001.gb
- 11. Start Artemis (double click) and click 'OK' on the first dialogue box.
- 12. Under **'File'** choose open **Project Manager**. Then click on the green **'+'** sign to create a new project (name it whatever you want)
- 13. Select the LXWW01000001.gb file you just saved in your working directory and click 'OPEN'

14. You should see something like this:

			Artemis E	ntry Edit: LXWV	V01000001.gb				
Entry: 🔽 LXWW01000	0001.gb								1
Selected feature: b	ases 3324 am	ino acids 1107	exon no. 3	AV274_0003 (/locus_tag="AV2	274_0003" /	codon_start=:	<u> /product="h</u>	ypothetical p
>>				0				\rightarrow Top s	strand
AV274 0002 🧲	Locus tag	is in the second s				· · · · · · ·			
	<u>ù h ù</u>								
AV274_0001_0002		_Y							
800	1600	2400	3200	4000	4800	5600	6400	7200	8000
		4		1			RINA		
		AV274_0003	mbda						
	· · ·	Gene	mode	15		AV274_0003			
	I <mark> </mark>						1 <mark>-</mark> 11		
		I							
Nuclea	tido						/ ←E	sottom	strand
	lue								
L V sequen	ice	VVAVD	DVGG	HGRDA		. G V .	FTMD	ALSV	M V T V
5 FL	BBC		ILEG KRWRJ	ARAGC	TGRAP	S V S . R C . '	SKWI VHDGF	R A FAR D	и ж. к. и - G. D. G
$5' \rightarrow 3'$ top stra	and GACGTTG	I COTTOCCOTAGACO	ACGTTGGAGGG	CACGGGCGGGATG	CACTOGTOGAGCACCT	CGGTGTCGNG	TTCACGATGGAC	GCGCTGACCGTGA	TGGTGACGGTG
$2^{\prime} \leftarrow 5^{\prime}$ bottom	etrand	80	41	00	4120	4	140	4160	10010700010
		R O R I R	R O I A	R & P H	V P R A G	R H R .	<u>* SPR</u>	A S R S	P S P P
TR**LS	<u>L S S T T</u>	TATSS	T P P (CPRSA	S T_S-e-R	PT-T	V IS/	SLTI	тут
ENKMVAL	TVVN	DNGYV	VNSP	VPPT (ΦΟΙΥΕ	тD.	ERHV	RQAH	HHRH
<<									7
source	1 88974								
gene CDS	<1 181 <1 181							6 from	
mENA	<1 181				int	ron		o fram	e
gene	349 2107							transla	ation
CDS mBN 4	349 2107 349 2107								
gene	2167 5551 c								
CDS	2167 5551 c								
dene	∠107 0001 C 7992 9104 c								
CDS	7992 9104 c								
mRNA dono	7992 9104 c								
CDS 1	10424 14156								
mRNA 1	10424 14156								
aene 1	14916 15653 c								

- 15. There are 3 different fields of view. The top shows the gene models (blue) the mRNAs (dark grey) and the stop codons (black ticks). The middle shows the nucleotide sequence with the predicted amino acid sequence above and below (top strand is $5' \rightarrow 3'$ and bottom strand is $3' \rightarrow 5'$). The bottom panel shows all the features of the contig as indicated in the GenBank file.
- 16. Double click on one of the gene models in the top panel. You'll notice that that area is highlighted below and you can even see the introns in the sequence (usually about ~30bp in length which is characteristic for *Blastocystis*)
- 17. If you 'Right click' on the gene model a menu will come up with all sorts of choices. Choose '**View**' and '**Amino acids of selection'**. You can output it in FASTA or other format. This is the predicted protein for that locus (the locus tags are listed in the top panel).
- 18. If you want to search for some locus tag or a sequence motif or something, use the Goto menu→ Navigator to help you find things.
- 19. Go to Select → All CDS Features. Then under 'File' → Write → Amino Acids of Selected Features. Save the file as 'contig1_proteins.fasta'
- 20. Quit Artemis.

Part 2 – Functional annotation of genes

Tools/databases used: NCBI BLAST/Conserved domains: http://www.ncbi.nlm.nih.gov Interproscan: https://www.ebi.ac.uk/interpro/ eggNOG-mapper/eggNOG database: http://eggnogdb.embl.de/#/app/home

Introduction:

Predicting putative functions for protein-coding genes is complicated and error-prone. Various methods include basing a prediction on one or several of the following:

- the functional annotation of the 'top hits' from a BLASTP search against a protein database (e.g. databases such as: nr, uniref, UniProtKB/Swiss-Prot etc.).
- the functional annotation of the best 'match' by searches using hidden Markov models (HMM) based on alignments orthologous groups in databases such as eggNOG, KOG, Panther etc. (e.g. eggNOG-mapper, PANNZER2, Panther)
- annotating the conserved domains *within* the protein using domain-based search tools (usually HMM-based) and domain databases such as Interproscan, PFAM, SMART etc.

Finding best hits and conserved domains with BLAST

- 1. **Open** the **contig1_proteins.fasta** file in Notepad (or open it on this **weblink**) and scroll down until find the protein with the name **AV274_0014**. It should have the words 'homeobox protein' in its name. **Copy its FASTA entry.** You can also find this FASTA of this protein at this **weblink**
- 2. Go to NCBI page (<u>http://www.ncbi.nlm.nih.gov</u>) and click BLAST on the right hand side menu.

BLASTN is for nucleotide sequence searches against nucleotide databases, BLASTX does 6 frames translations of a nucleotide sequence and search against amino acid databases BLASTP is for amino acid sequence searches against amino acid databases tBLASTn is for amino acid sequence searches against translated nucleotide databases (all six frames)

- 3. Choose **BLASTP** and **paste** the **AV274_0014** sequence into the window.
- 4. Choose the database you want to use:
 - **nr** non-redundant collection of almost all protein sequences in GenBank
 - **uniref** comprehensive and non-redundant set of sequences from major research organisms that is well annotated
 - UniProtKB/Swissprot very clearly and carefully annotated protein database
- 5. Note a number of other options including i) restricting the search to particular taxonomic groups, and iii) different versions of BLASTP for different settings

Choose Searc	ch Set								
Database	Non-redundant protein sequences (nr) 📀 🕑 🧲 Database choice								
Organism Optional	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.	taxonomic group							
Exclude Optional	□ Models (XM/XP) □ Non-redundant RefSeq proteins (WP) □ Uncultured/environmental sample sequences								
Entrez Query	Entrez Query You Tube Create custom database								
Optional	Enter an Entrez query to limit search 🤢								
Program Sele	ction								
Algorithm	Quick BLASTP (Accelerated protein-protein BLAST) Delastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) DELTA-BLAST (Domain Enhanced Lookun Time Accelerated BLAST) 	tions							
	Choose a BLAST algorithm (9)	4							

- 6. Choose the default and click 'Submit'.
- 7. If the protein contains domains of interest (i.e. conserved protein domains that are found in databases), then it will be shown as follows. Later we will click on this (not now).

8. Below this you should see all the matching sequences in the database coming up as colored lines (colors are coded according to score – high scores means your sequence matches database sequence better)

9. Scroll down and you can see the summary of the search. How many hits are there to any *Blastocystis* subtype? What subtypes have homologs?

Sequences producing significant alignments:				Pe	ercen ide	t sequence entities
Select: All None Selected:0						
Description	Max score	Total score	Query cover	E value	Ident	Accession
homeobox protein TGIF2 [Blastocystis sp. ATCC 50177/Nand II]	893	893	100%	0.0	100%	<u>OAO18232.1</u>
hypothetical protein JH06_1170 [Blastocystis sp. subtype 4]	244	244	69%	6e-71	44%	XP_014528909.1
uncharacterized protein [Blastocystis hominis]	133	133	34%	3e-32	49%	XP_012897061.1
homeobox protein TGIF2-like [Urocitellus parryii]	73.9	73.9	14%	1e-11	52%	XP_026261173.1
predicted protein [Aspergillus terreus NIH2624]	73.6	73.6	22%	2e-10	41%	XP_001210756.1
	_			1		
	E-va so rand	lues: core om (i	the r or gre if seq	umb eater uenc	er of you' es w	hits with that d expect at ere unrelated)

Note: you will not find homologs from Blastocystis ST2, 3, 6, 8 and 9 amongst the hits because these genomes are not annotated and so don't have 'proteins' in the protein database. If you want to know if a homologous gene is present in those genomes you should go back to the BLAST front page (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>) and use **tblastn** and select the '**Whole-genome shotgun contigs** (**wgs**)' database to search (**tblastn** will translate those genomes in all 6 frames and BLAST your protein sequence against these translations) 10. Keep scrolling down and you will see the actual BLAST alignments.

hypotheti Sequence I See 1 m	al protein JH06_1170 [Blastocystis s b: <u>XP 014528909.1</u> Length: 629 Numbe ore title(s)	p. subtype 4] r of Matches: 1		
Range 1: 2	88 to 523 GenPept Graphics		Vext Match	🔺 Previous Match
Score	Expect Method	Identities	Positives	Gaps
244 bits(6	24) 6e-71 Compositional matrix adjust	. 132/300(44%)	189/300(63%)	16/300(5%)
Query 17	EIYQDDIQNCIALSVDSRIEKMVELTSDIE E+ 0 D++NC++L++DS ++VELTSDIE	ELLGLQSDKEFRMQI E LGL SD+E+RM I	RVNLFRQRAVAEGI	PP 76
Sbjct 23	8 ELPQADVKNCLSLALDSHASRIVELTSDIE	EQLGLVSDREYRMSH	RLSVLRKSALDQCI	FP 297
Query 77	VLDPEFSVKVENYCSLLQSKKAILLSMYKC +++PEF+ V Y LL K+AIL ++Y C	CEDFCLAMHNELEAI C+DFC +M +E++ +	INQSFANNPEERAA	FV 136 +
Sbjct 29	8 MMEPEFTASVIEYNDLLVKKRAILHNIYTC	CKDFCASMRSEVDLV	/CSGEEQTKEETAE	-L 356

- 11. The Query is your sequence of interest and the 'Sbjct' is the database sequence aligned to it. Note how divergent the homolog of ST4 is from your ST1 (NandII) query sequence. They are only 44% identical!
- 12. Scroll back up to the 'Conserved domain' graphic at the top. Click on it and you should see something like this:

Protein Classi	fication			2
Abdominal-A and I Abdominal-A and ho	h omeodomai i meodomain do	n domain-containing protein (domain architecture ID 11929844) main-containing protein		
Graphical sum	nmary 🗌 🛛	Zoom to residue level show extra options »		?
Query seq.		75 150 225 300 375 specific DNR base contacts	430	
Specific hits		Homeobox_ homeodomain HOX		
Non-specific hits		C0G5576		
Superfamilies		homeodomain Abdoninal—A superfamily		
		Search for similar domain architectures 2 Refine search 2		
List of domair	n hits			?
Name	Accession	Description	Interval	E-value
[+] Homeobox_KN	pfam05920	Homeobox KN domain; This is a homeobox transcription factor KN domain conserved from fungi to	178-213	4.80e-14
[+] homeodomain	cd00086	Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic	158-213	2.26e-11
HOX	smart00389	Homeodomain; DNA-binding factors that are involved in the transcriptional regulation of key	159-213	2.82e-11
H COG5576	COG5576	Homeodomain-containing transcription factor [Transcription];	159-264	7.94e-05

- 13. This is a summary of all the hits to conserved domain databases and specific information about specific functional residues in the protein (inferred from homologs)
- 14. Click 'Zoom to residue level' and you can see in detail all of the annotated features in your query sequence including DNA binding motifs etc.
- 15. Mouse over each of the features. A box should come up explaining more about that feature. If you click on various domain **Accessions** you will get an idea of the function of this domain.

Finding conserved domain structure and functional sites with Interproscan

- 1. Go to **Interproscan** <u>http://www.ebi.ac.uk/interpro/search/sequence-search</u> and note the box where you could **paste the same sequence (weblink)**.
- 2. I've already completed the search; the result is here: https://www.ebi.ac.uk/interpro/sequencesearch/iprscan5-S20181009-170444-0466-5488606-p2m
- 3. The output will show predicted protein family, domains, other predicted features (such as disordered regions) and annotated residues. Click on them and learn about the regions at your leisure.

EggNOG functional annotation steps to follow:

- 1. Go to the EggNOG database: <u>http://eggnogdb.embl.de/#/app/home</u> and click on **eggNOG-mapper** on the top left
- 2. Select **Browse** and upload your **contig1_proteins.fasta** file.
- 3. Do NOT hit Run as you will not have time to get the results.
- 4. Go to this web address for the results from contig1 proteins: http://eggnogdb.embl.de/#/app/emapper?jobname=MM_wWTmMX
- 5. Click on 'Explore annotations'. You should see something like this:

Show raw files Show 10	Hide annotations entries									Search:	
query	Seed Ortholog	evalue	score	Predicted name	GO terms	KEGG KO	BiGG reactions	tax scope	eggNOG OGs	best OG	COG Cat.
AV274_0001	PAC_15719933 (400682)	2.3e-25	^{83.1} g name	RPL7	GO:000003 GO:000022 GO:000184 GO:000226 GO:000278 GO:000956 GO:0002119 GO:0002164	K02937		meNOG[21]	0V5E8@meNOG 12NYC@opiNOG COG1841@NOG KOG3184@euNOG	KOG3184 (score:83.3859786987)	J
AV274_0002	PYU1_T001593 (65071)	8.9e-64	209.7	DNAJC3	GO:0001932 GO:0001933 GO:0001934 GO:0003674	K09523 K09527		euNOG[57]	COG0484@NOG KOG0624@euNOG	KOG0624 (score:330.375732422)	0

- 6. Click on the KEGG KO. This brings you to the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation of that 'orthologous group' of proteins. KEGG is a database that associates molecular functions with proteins and biochemical pathways
- You will see GO terms. These are 'Gene ontology' numbers that refer to general classes of molecular functions. More can be found about GO here:

http://www.geneontology.org/page/introduction-go-resource

- 8. Click on the best orthologous group (best OG). This gives you the putative annotation of your protein.
- 9. Note that you can access all kinds of information about this OG at the bottom of this entry:

KOG3184 Eukaryotes	J Trans Ribosoma	lation, ribosomal s Il protein	structure and biog	enesis	627 p	roteins 238 species
¥	¥	₩	₩	₩	¥	¥
Fine-grained Orthologs	Orthologous Group	Taxonomic Profile	Functional Profile	Alignment	Phylogenetic Tree	Download -

16. A text file of annotations for all of the proteins (for which eggNOGs were found) can be downloaded from the original results page by clicking on **'Download annotations'**

Notes:

- You can do a similar kind of analysis to eggNOG-mapper (i.e. annotate a large number of proteins in FASTA format) using PANNZER2: http://ekhidna2.biocenter.helsinki.fi/sanspanz/.
- Individual protein functions can also be investigated in the well annotated **Panther** database: <u>http://www.pantherdb.org/tools/hmmScoreForm.jsp</u>

Part 3 – Prediction of subcellular localization

Background reading on the secretory pathway: "Overview of the Secretory Pathway": https://www.ncbi.nlm.nih.gov/books/NBK21471/

Tools used:

TargetP:	http://www.cbs.dtu.dk/services/SignalP/
TMHMM:	http://www.cbs.dtu.dk/services/TMHMM-2.0/
BUSCA:	http://busca.biocomp.unibo.it/

Introduction:

Signal or targeting peptides can be at the N-terminus (signal peptides for: secretory pathway, endomembrane system, and targeting peptides for mitochondria, chloroplasts), within the sequence (e.g., nuclear localization signals) or C-terminus (e.g. PTS1 for peroxisomes and ER-retention signals). The properties of target peptides vary depending on the organelle or membrane to which they are targeted. Bioinformatic prediction tools tend to work best if they have been 'trained' on experimental localization data for a large set of proteins from the organism of interest. Currently there is not enough experimental data from *Blastocystis* to train such methods, so we must rely on predictions from other organisms that will necessarily be less accurate.

- **TargetP** is a leading neural-network-based method for testing for the presence of localization signals for secretory pathway, mitochondria and chloroplasts
- **TMHMM** is a hidden Markov Model-based method for determining if proteins have transmembrane regions
- **BUSCA** is a server that uses a large number of different prediction tools to come to a consensus localization prediction

Steps to follow to run TargetP (targeting peptide) prediction:

- 1. Go to the TargetP server in Denmark: <u>http://www.cbs.dtu.dk/services/TargetP/</u>
- 2. Note all the various options you can select. Under 'Performance scope' click the 'Perform cleavage site predictions' option
- 3. Open a new browser tab and open this **weblink** containing two proteins: i) a putative fucose permease protein and ii) the alpha subunit of succinyl-CoA synthetase from *Blastocystis* sp. ST1 (NandII)
- 4. Copy and paste the sequences into the box in the TargetP box and click 'Submit'
- 5. The result should look like this:

### targetp vl.1 Number of query s Cleavage site pre Using NON-PLANT r	prediction resu sequences: 2 edictions includ networks.	lts ##### ed.	######	#######	#####	####	######
Name	Len	mTP	SP	other	Loc	RC	TPlen
OA015144.1 ABY62723.1	408 318	0.010 0.871	0.948 0.026	0.118 0.149	S M	1 2	26 18
cutoff		0.000	0.000	0.000			
Explain the output	ut. Go <u>back</u> .						

- 6. The first protein is predicted to have a signal peptide (SP) for the secretory pathway (S) and the second one has a mitochondrial targeting peptide (mTP) for mitochondria (M). Each occurs at the N-terminus of the protein of interest. Note the prediction of the length of the peptides (under **TPlen**).
- 7. Click on the 'Explain' button to understand the various abbreviations

TMHMM (transmembrane regions) prediction, steps to follow:

- 1. Go to the TMHMM server: http://www.cbs.dtu.dk/services/TMHMM-2.0/
- 2. Copy the FASTA sequences of the same two proteins as above (weblink).
- 3. Copy and paste the sequences into the box and click 'Submit'
- 4. The **first** result should look like this:

- 5. The protein clearly has 11 transmembrane segments indicating it is an integral membrane protein. If it is on the cell surface then 'inside' refers to the cytoplasm and outside to the outside of the cell.
- 6. The second protein (succinyl-CoA synthetase, alpha subunit) has no predicted transmembrane domains.

BUSCA subcellular localization prediction, steps to follow:

- 1. Go to the BUSCA website in Italy: <u>http://busca.biocomp.unibo.it/</u>
- 2. Choose the taxonomic origin of your sequences from the pull-down menu: 'Eukarya Other 9 compartments'
- 3. Paste the sequences of the same two sequences (weblink) into the box
- 4. Click '**Start prediction'.** This might take a little while so you can continue with the next exercise and leave the webpage open. The result should look like this:

	Protein Accession/ID 🔻	GO-id	GO-term	Score 🔶	Alternative Localization	Features 🔶
0	OAO15144.1	GO:001250	5 C:endomembrane system	0.67	GO:0005886 - C:plasma membrane (score=0.47)	Transmembrane Alpha Helix
0	ABY62723.1	GO:000573	C:mitochondrion	0.82	-	Mitochondrial Transit Peptide

- 5. Note for the putative fucose permease (OAO15144.1) there are two possible localizations: endomembrane system (better score) and plasma membrane (not quite as good score).
- 6. <u>Optional</u> (if time permits): You can try this tool with this **weblink** to 5 cysteine proteases obtained from a text search of the Protein database at NCBI

Notes

Other useful tools include localization predictions of a new 'deep learning' algorithm DeepLoc: <u>http://www.cbs.dtu.dk/services/DeepLoc/</u>, the tool Mitofates (for mitochondrial prediction): <u>http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi</u> and Phobius (for signal peptide prediction): <u>http://phobius.sbc.su.se/</u>.

Part 4 – Alignment and phylogeny of a protein family:

Tools used: **MAFFT version 7** (online): <u>https://mafft.cbrc.jp/alignment/server/</u> **Phylo.io** (online): <u>http://phylo.io/</u>

Introduction:

An important part of comparative genomics is inferring the phylogenies of gene families in the genomes of interest. To do this you first need to retrieve close homologs of the proteins using the top BLAST hits or based on the orthologous groups (e.g. eggNOGs) that you have found are the best match. All aligned sequences (in FASTA format) can then be aligned together using a multiple alignment program. There are many different multiple alignment tools, but a popular tool is MAFFT. One the alignment is estimated, it should be viewed using a viewer like Seaview or an online tool. Then a phylogeny can be estimated. Here we use a 'quick and dirty' pairwise distance matrix method method to get a rough picture of relationships. To get a more robust phylogeny, a maximum likelihood or Bayesian analysis should be conducted.

Alignment and phylogeny of a protein family in *Blastocystis*, steps to follow:

- 1. Copy the fucose permease sequence from the file of two proteins above (or **weblink**) and copy and paste it into the NCBI BLASTP window: https://blast.ncbi.nlm.nih.gov/Blast.cgi
- 2. Click **BLAST**
- 3. When the results return, scroll down to the list of best hit and click on 'Select: <u>All</u>' and then 'Download'. This would save the file in FASTA (Complete sequences) format in your working directory. This contains 100 of the best hitting sequences.

Select: <u>All None</u> Selected:100

Alignments Bownload GenPept Graphics Distance tree of results Multiple alignment

- 4. Note that you can actually get a view of a multiple alignment and distance tree from the above links as well. Feel free to check that out. We will use a different method.
- 5. Go to the online MAFFT multiple alignment server: <u>https://mafft.cbrc.jp/alignment/server/</u>
- 6. Open this **weblink** in a new tab of your web browser. This is the same file as above but with only 50 best hit sequences saved.
- 7. Copy and paste it into the MAFFT server window. Scroll down and note the various options for the multiple alignments. Just use the defaults.
- 8. Rather than waiting for the results of submitting this run, just go to the following URL where it has already finished:

https://mafft.cbrc.jp/alignment/server/spool/_out.181010085518363SqoGkIB3NyHsRK2TEAjD9lsfn ormal.html

9. Scroll up and down. You can see the fucose permease that you used to BLAST is at the top and is aligned to homologs

<u>Clustal format Fasta format MAFFT result View Tree Refine dataset Return to home</u>
View
Reformat to GCG, PHYLIP, MSF, NEXUS, uppercase/lowercase, etc. with Readseq
GUIDANCE2 computes the residue-wise confidence scores and extracts well-aligned residues
Refine dataset
Phylogenetic tree

- 10. The various options include viewing the alignment in **Fasta format**, alignment '**View**', phylogenetic analysis ('**Tree**') etc.
- 11. Click on 'View' and select MSA viewer (in a new window). This allows you to inspect your multiple alignment and choose sequences to remove etc.
- 12. Go back the original results window and click on 'Tree'
- 13. There are multiple options for making the tree. Choose the default options (faster) and click 'Go!'

Note: Ideally you **should** allow for different rates of evolution at different sites ('**Heterogeneity among** sites') and you **should** select 'Estimate' for the alpha shape parameter (this parameter governs the how variable the rates are at different sites – you **should** estimate it from your alignment). You **should** also conduct **Bootstrap** analysis to determine how robust the estimated groupings in your tree are (high bootstrap values \rightarrow more robust). All of that takes much longer.

14. You will see:

Result (Phylo.io 1.0.0)
Phylo.io runs on any modern browser.
View tree on Phylo.io
Refine dataset on tree

15. Click on 'View tree on Phylo.io'

Note that you can use this phylogenetic tree viewer online at <u>http://phylo.io/</u> for any tree that you generate with any phylogenetic program that outputs 'Newick' format tree files (including IQ-TREE, RAxML, MrBayes etc.)

- 16. Click 'Render' on the left side and your tree should pop up. You can manipulate the tree and how it is shown using the arrows and the settings.
- 17. If you want to visualize the Blastocystis homologs, **click on the little search icon on the top right corner** and **type in the word 'Blastocystis'**. They will show in red like this (without the blue boxes) and letter):

- 18. You can see from the tree that a number of gene duplications have happened prior to the divergence of the three subtypes generating little 'paralog' trees. The paralogs are labeled A-F. It seems likely there could some functional differences between these 'Major facilitator superfamily' (MFS) proteins → they may be expressed under different conditions, have different affinities for substrates or different substrates.
- 19. You can go back to the previous menu and choose 'refine dataset on tree'. This allows you to choose subsets of your proteins based on the tree to realign and generate a new phylogeny.

Notes: It would be better to conduct phylogenetic analysis using maximum likelihood (ML) or Bayesian analyses with more sophisticated models of the evolutionary process. A very useful tool for ML analysis is **IQ-TREE** (see <u>www.iqtree.org</u>) that has online servers that you can upload your FASTA file to analyze. Here is an example of a run with IQ-TREE using the same aligned file from MAFFT as above: http://iqtree.cibiv.univie.ac.at/?user=andrewjmroger@gmail.com&jobid=181010020931

Part 5, Carbohydrate utilizing enzymes (CAZy)

Databases/Tools used: dbCAN2, a series of tools for searching the CAZy enzymes database: http://cys.bios.niu.edu/dbCAN2/blast.php

Introduction

There are a large number of enzymes in nature that degrade, modify or create glycosidic bonds, the bonds that link sugar (or polysaccharide) moieties together or to other organic molecules via O, N or S atoms. The CAZy database (www.cazy.org) describes the families of structurally-related catalytic and carbohydrate-binding modules (or functional domains) of enzymes. If a predicted protein is homologous to one of these families or functional modules, it can be useful to know that to predict the function of the protein. Here we use a database searching tool to find CAZy homologs of a Blastocystis ST1 (NandII) protein. Here is a Link to the paper describing the CAZy database: https://academic.oup.com/nar/article/42/D1/D490/1057423

Steps to follow:

- 1. Go to NCBI (<u>https://www.ncbi.nlm.nih.gov/</u>) and choose 'Protein' from the pull-down menu. Type in 'OAO18236.1', an accession number of a protein from the first contig of the Blasto NandII assembly.
- 2. Click on the FASTA link near the top to view the protein in FASTA format. Copy the FASTA entry (header + sequence). This can also be accessed at this **weblink**
- 3. Go to the dbCAN2 website to search the CAZy database: http://cys.bios.niu.edu/dbCAN2/blast.php
- 4. Fill in the form with your email. And select the various search tools: HMMER, DIAMOND and Hotpep.

OdbCAN meta serv	er: automated CAZyme annotation
Home Annotate Download Help About us	
You are here: <u>Home</u> > <u>Annotate</u>	Cite us: NAR/gky418 and gks479
Annotate proteins using DIAMOND, HMMER, and Hotpep via CAZy, dbC	AN, and PPR respectively
Server Info: Running Jobs: 1 Pending Jobs: 0	ame: the result page will be empired to you when the job is done
8/25/2019 . Cover minimum of the reader of t	so updated.
Email :	
Choose Sequence type:	
Protein sequence (example)? Nucleotide sequence (example)? Select Which Tools To Run	4
✓ HMMER (E-Value < 1e-15, coverage > 0.35) □ DIAMOND (E-Value < 1e-102) = CAZyme+TC)?	□ Hotpep (Frequency > 2.6, Hits > 6) □ CGCFinder (Distance <= 2, signature genes

5. Paste the FASTA file in to the box below and click 'Submit'

6. After it finishes running you should get the following window

Links to the CAZy database for that protein module

- 7. Click on the **HMMER**, **DIAMOND** and **Hotpep** links. These take you to the CAZy database for the modules identified to give you functional information
- 8. Click on the Gene ID link. This provides a picture of the best hitting CAZy domains mapped on the sequences (as a line).
- 9. Using this information plus information from eggNOG-mapper and BLAST, you can make predictions as to the function of the protein.

Part 6, Predicting the type of peptidases/protease you have

Tools/Databases used: MEROPS: <u>https://www.ebi.ac.uk/merops/</u> EBI Blast server: https://www.ebi.ac.uk/Tools/sss/ncbiblast/

Introduction

Blastocystis subtypes secrete proteases/peptidases that, by degrading various proteins in the host, could be involved in pathogenesis (reviewed in Ajjumpur and Tan (2016) <u>https://www.ncbi.nlm.nih.gov/pubmed/27181702</u>). It is therefore of interest to know what the localization, types and function of the various proteases in the various subtypes. A simple text based search of the

'Protein' database of NCBI using terms such as '**protease and Blastocystis**' or '**peptidase and Blastocystis**' will retrieve the sequences of hundreds of putative examples. **BUSCA** can be used to predict their localization. To try to determine their particular function, the MEROPS Peptidase database is a useful place to start.

Searching the MEROPS database. Steps to follow:

- 1. Go to the MEROPS database at the EBI: <u>https://www.ebi.ac.uk/merops/</u>
- 2. Note the resources available on this website. Click on the 'BLAST MEROPS' link on the left
- 3. There are several options to choose from. Select the first option to search the **merops_scan** database. This one is the simplest database to use.
- 4. This will take you to the **EBI Blast-server** and show you a list of databases to choose to search.
- 5. Unselect the UniProt Knowledgebase
- 6. Select the 'Other Protein databases' and then check the 'MEROPS-MPRO (Sequences from the MEROPS scan dataset)'.

Open another web browser tab and click on this **weblink** to 5 cysteine proteases from ST1 NandII.

7. Copy these and paste the **first sequence** into the **EBI Blast-server** window and click **'Submit'** at the bottom. The result should look like:

Align. 🔺	DB:ID \$	Source \$	Length 🖨	Score (Bits) ≑	ldentities %	Positives %	E() \$
1	MPRO:MER0185284	- legumain, {Blastocystis}-type (Blastocystis sp. BW-2009a) [C13.008]#C13#{peptidase unit: 16-276}~source ACO24555~	261	240.7	43.4	62.5	2.0E-78
<mark>√</mark> 2	MPRO:MER0004009	- legumain (plant alpha form) (Canavalia ensiformis) [C13.002]#C13#{peptidase unit: 2-277}~source E05717~	276	199.5	39.4	60.3	3.1E-62

- 8. The top hit is to **'legumain'** of Blastocystis-type. The database ID is on the left and you can click on it. The MEROPS identifier is **C13.008**
- 9. You can now return to the MEROPS database (<u>https://www.ebi.ac.uk/merops/</u>) and click on **SEARCHES** on the left.
- 10. Search by 'name' (the first option) using 'legumain' and you get all the types. If you click on the Blastocystis ptype at the bottom right you get specific information about it including domains, inhibitors, substrates and literature:

Summary	Alignment	Sequences	Sequence features	Distribution	Literature	Substrates	
Inhibitors							
Names							
	MEROPS Name legum	ain, <i>Blastocystis-</i> type					
Domain architectu	ire						
			C13.008				
MEROPS Classific	ation						
	Classification Clan C	D >> Subclan (none) >> Famil	ly C13 >> Subfamily (none) >	> C13.008			
	Holotype legumain, Blastocystis-type (Blastocystis sp. BW-2009a) (peptidase unit: 16-276), MERNUM MER0185284						
	History Identifier created: MEROPS 9.1 (28 January 2010)						
Activity							
	Catalytic type Cysteir	ie					

More bioinformatics tools and databases:

Phobius Subcellular localization prediction: http://phobius.sbc.su.se/ MitoFates Mitochondrial localization: http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi Membrane Transporters at TransportDB: http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi Membrane Transporters at TransportDB: http://www.membranetransport.org/transportDB2/index.html Transporter Classification Database (TCDB): http://www.tcdb.org/ Kinases at kinase.com: http://www.tcdb.org/ MetaCyc Metabolic Pathway Database: https://metacyc.org/